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A B S T R A C T

Optical flow estimation forms the core of several computer vision tasks and its estimation requires accurate
spatial and temporal gradient information. However, if there are fast-moving objects in the scene or if the
camera moves rapidly, then the acquired images will suffer from motion blur, which will lead to poor
optical flow estimation. Such challenging cases can be handled by event sensors which are a novel generation
of sensors that acquire pixel-level brightness changes as binary events at a very high temporal resolution.
Brightness constancy constraint, which is the basis of several optical flow algorithms cannot be directly used
on event sensors making it challenging to estimate optical flow. We overcome this challenge by imposing
brightness constancy constraint on intensity images predicted from event sensor data. For this task, we design
a recurrent neural network that jointly predicts a sparse optical flow and intensity images from the event data.
While intensity estimation is supervised using ground truth frames, optical flow estimation is self-supervised
using the predicted intensity frames. However, in our case the temporal resolution of the ground truth intensity
frames is far lower than the temporal resolution of the predicted intensity frames, making it challenging to
supervise. As we use recurrent neural network, such a challenge can be overcome by sharing the weights
for each of the predicted intensity frames. Quantitatively our predicted optical flow is better than previously
proposed algorithms for optical flow estimation from event sensors. We also show our algorithm’s robustness
against challenging cases of fast motion and high dynamic range scenes.
. Introduction

Many of the modern computer vision applications rely on acquir-
ng data from conventional image sensors. Optical flow forms basis
or many of the computer vision tasks such as object-tracking, mov-
ng object segmentation, autonomous navigation, etc (Fortun et al.,
015). The dense texture rich information acquired from conventional
mage sensors, enable dense optical flow prediction. The brightness
onstancy based energy functional introduced by Horn and Schunck
1981) and Fortun et al. (2015) is the basis of many modern optical
low estimation algorithms. This energy functional relies on accurate
ensing of image intensities between successive frames. This bright-
ess constancy constraint fails to hold when the acquired images are
egraded from motion blur due to fast-moving objects or due to the
apid camera motion as shown in Fig. 1. Again, due to low frame
ate of image sensors, it becomes challenging to estimate optical flow
or cases of large scene motion even without significant blur. This
hallenge can be overcome if we use an image sensor with a very
igh temporal resolution. Conventional image sensors, that acquire
igh temporal resolution video are significantly expensive and require
arge data bandwidth and hence event-based sensors can provide a

∗ Corresponding author.
E-mail address: ee16d409@ee.iitm.ac.in (P. Shedligeri).

viable alternative. Event-based sensors are a novel generation of neu-
romorphic sensors which asynchronously sense only the pixel-level
brightness changes with a temporal resolution of the order of mi-
croseconds (Delbrück et al., 2010). At each pixel, the event sensor
outputs a positive/negative event when it senses an increase/decrease
in brightness over a specified threshold. Its extremely high temporal
resolution has been demonstrated by reconstructing intensity frames
at a frame rate of several thousand frames per second. These sensors
also have a much higher dynamic range compared to conventional
image sensors making them attractive for several computer vision
applications (Gallego et al., 2019).

Optical flow estimation directly from event sensors is attractive but
a challenging task as the brightness constancy based energy functional
cannot be used directly. Despite this challenge, several algorithms have
been proposed in the literature for event based optical flow estima-
tion (Liu and Delbruck, 2018; Nagata et al., 2019; Paredes-Vallés et al.,
2019; Khoei et al., 2019; Bardow et al., 2016; Zhu et al., 2018c; Haessig
et al., 2018; Gallego et al., 2018; Almatrafi and Hirakawa, 2020). While
learning based methods have shown significant improvement in optical
flow prediction accuracy, they fail to exploit the advantages provided
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Fig. 1. Conventional frame-based optical flow algorithms suffer when the input images
re degraded with motion blur as shown in the top row. Event sensors on the other hand
perate at much higher temporal resolution and can sense much higher dynamic range
han the frame-based sensors. We accumulate the events triggered between the two
uccessive intensity images as event frames and show some of them in the second row.
ur proposed algorithm takes these intermediate event frames as input and predicts
orresponding intensity images and optical flow. In this example, optical flow and
ntensity images are predicted at 60 intermediate temporal locations corresponding to
60x temporal super-resolution.

y the event sensor. EV-FlowNet (Zhu et al., 2018a), is one of the first
earning-based algorithms proposed to predict optical flow from event
ensor data. It used the low dynamic range and low frame rate intensity
rames and use the brightness constancy as a supervisory signal, thus
gnoring the high dynamic range and high temporal resolution offered
y event sensors. In Zhu et al. (2019), the authors propose to use a
ontrast maximization framework to estimate optical flow. This is an
nsupervised algorithm, where the event sensor data alone is used to
upervise optical flow prediction, thus fully utilizing the high dynamic
ange nature of event sensors. However, this algorithm requires an
vent volume of 30,000 events as input and hence cannot predict
ptical flow at very high frame rates. This algorithm also makes a
imiting assumption of linear object motion thus affecting the optical
low prediction accuracy. To make full use of the event sensor advan-
ages, algorithms for optical flow estimation from event sensors should
ave the following desirable properties: (a) the optical flow should be
redicted at high temporal resolution, (b) predicted optical flow should
e reliable even for challenging high dynamic range scenes, (c) should
ot require difficult to acquire ground truth optical flow, (d) should
ot make non-generalizable assumptions such as linear motion of the
bjects.

In our proposed method, intensity frames and a sparse optical flow
re simultaneously predicted from the input event sensor data. The
vent sensor data is first converted to a series of event frames by
tacking a fixed number of events per frame following the stacking by
umber (SBN) principle of Wang et al. (2019). A sequence of event
rames are given as input one-by-one to the neural network which pre-
icts the corresponding intensity frame and optical flow. The intensity
rame prediction is supervised using the temporally sparse ground truth
ntensity frames. While our proposed algorithm predicts intensity frame
t a very high temporal resolution (at the rate of incoming events) the
rames acquired from hybrid intensity and event based sensors (Brandli
t al., 2014) are at a much lower temporal resolution. Thus, it is not
ossible for us to have a supervised loss for every predicted intensity
rame. We overcome this challenge by using recurrent neural network
rchitecture that makes it possible to use supervision only at a few time-

teps by sharing weights across all the time-steps. Recurrent neural

2

Fig. 2. Ambiguity in intensity image prediction from a single event frame. The first
column shows two different scenes which have opposite motion with respect to the
camera. These two scenes produce the same event frame at time 𝑡 making it ambiguous
to predict the corresponding scene intensity from the single event frame. However,
when we consider the next event frame at time 𝑡 + 1, we clearly see the motion in
the scene. Modeling this temporal information using recurrent neural network helps in
predicting the intensity frames unambiguously from event data alone.

networks have already been used in Rebecq et al. (2019b) to predict
high frame rate intensity frames. We adapt this network to simultane-
ously predict intensity frames and optical flow. As demonstrated for
optical flow prediction from conventional image sensors (Jason et al.,
2016; Ren et al., 2017; Meister et al., 2018), we use the brightness
constancy constraint as a supervisory signal for optical flow prediction
from event sensors.

In summary, we make the following contributions:

• We propose a semi-supervised learning algorithm to predict high
frame rate, sparse optical flow for high dynamic range scenes.

• Optical flow prediction is self-supervised using the high frame
rate and high dynamic range intensity frames predicted directly
from the event sensor data. Thus, ground truth optical flow is not
necessary for training our proposed algorithm.

• We also demonstrate the generalizability of our proposed algo-
rithm on a wide variety of open source event datasets captured
with different sensors and in different environments.

2. Related work

Motion estimation from event sensors: Although its a challenging
task to estimate optical flow from event sensors, several algorithms
have been proposed (Liu and Delbruck, 2018; Nagata et al., 2019;
Paredes-Vallés et al., 2019; Khoei et al., 2019; Bardow et al., 2016;
Zhu et al., 2018a, 2019, 2018c; Haessig et al., 2018; Gallego et al.,
2018). Works such as Gallego et al. (2018) and Zhu et al. (2018c,
2019) use motion compensation on the space–time volume of events
to estimate optical flow. In Haessig et al. (2018), the authors design a
spiking neural network to estimate optical flow and demonstrate their
proposed algorithm on IBM’s neuromorphic chip. A few learning based
methods have also been proposed for estimating optical flow from event
sensors (Zhu et al., 2019, 2018a).
Intensity image reconstruction: Previously researchers have
attempted to estimate intensity frames from event sensor (Reinbacher
et al., 2016; Scheerlinck et al., 2018; Bardow et al., 2016; Shedligeri
and Mitra, 2019; Rebecq et al., 2019a; Wang et al., 2019), so that the
intensity frames could be used as an input to off-the-shelf frame based
computer vision algorithms. Recent learning based algorithms (Rebecq
et al., 2019a; Wang et al., 2019) have shown a great improvement in
intensity image quality compared to traditional methods. The closest
work to ours is Bardow et al. (2016), where the authors propose
a framework to simultaneously estimate intensity and optical flow
directly from the event sensor data.

3. Optical flow estimation from event sensors

3.1. Modeling events as sequential data

The output of an event sensor is a 4-tuple (𝑥, 𝑦, 𝑡, 𝑝) where 𝑥 and
represent the spatial location, 𝑡 represents the time instant and 𝑝
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Fig. 3. Overall flow of our proposed method: Our proposed methods takes in a single event frame at each time-step, which is then input to a ConvLSTM (Convolutional Long–Short
Term Memory) network. The updated hidden state from the convLSTM network is input to an encoder network consisting of four strided convolutional layers followed by a ResNet
block. The hidden representation from the encoder network is then fed as input to two decoder networks, decoderImg and decoderFlow, which predict the intensity image and the
ptical flow, respectively.
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enotes the polarity (+1 or −1) of the triggered event. Following Wang
t al. (2019), we stack these events into a sequence of event frames to
orm the input to our algorithm. The temporal information is obviously
ost due to this projection of spatio-temporal data as a spatial frame. In
ig. 2, we show a toy example where two different video sequences
re used to generate an event frame at time 𝑡. Both the event frames
ook identical as they lack any temporal information about the events,
eading to ambiguity in prediction of intensity frames.

To tackle this loss of temporal information we use a sequence of
vent frames akin to a sequence of image frames forming a temporal
ideo. The effectiveness of this simple representation can be seen from
ig. 2 where a clear distinction emerges between the two cases of scene
otion when considering a video sequence instead of looking at each

rame independently. It is imperative for us to design a neural network
hat can effectively incorporate this temporal information so as to
nambiguously predict the intensity images. LSTM (Long–Short Term
emory) (Gers et al., 1999) networks have been shown to be effective

or such tasks and we use them to model the long-term temporal
ependency in the sequence of event frames. Although the input to the
lgorithm at each timestep is a single event frame, the intensity frame
s still unambiguously predicted, demonstrating the effectiveness of the
roposed LSTM network to model sequential information.

.2. Joint estimation of intensity image and optical flow

Fig. 3 shows our overall model to predict the intensity frames
nd optical flow from input event sensor data. The intensity frame
rediction is supervised using temporally sparse raw intensity images
cquired from the conventional image sensor present in DAVIS (Brandli
t al., 2014). DAVIS is a hybrid sensor consisting of co-located intensity
nd event based sensors. The input frames are formed by accumu-
ating events occurring in 𝑁 non-overlapping sub-intervals between
uccessive intensity frames. Each of these sub-intervals contain a fixed,
redetermined number of events. These 𝑁 event frames are given
s input and at the output we obtain the 𝑁 intensity frames and
orresponding 𝑁−1 optical flow estimates. In the following sections we
laborate on the training algorithm for intensity and the optical flow
stimation.

.2.1. Intensity image prediction
We obtain the dataset to train our network from a hybrid intensity

nd event based sensor where the event data and intensity images are
3

erfectly registered. Such hybrid sensors can acquire intensity frames
t the rate of 25–30 frames per second and the event data at the
emporal resolution of the order of microseconds. We first elaborate
he process of predicting and supervising intensity image prediction
onsidering two arbitrary intensity frames 𝐼𝑘 and 𝐼𝑘+1 and the 𝑁 event
rames between them. This process can be generalized to any number
f successive raw intensity frames from a given video sequence.

For ease of training, we divide the interval between 𝐼𝑘 and 𝐼𝑘+1
nto 𝑁 sub-intervals based on equal time, instead of equal number of
vents in each interval. While training, we use the stacking by time (SBT)
trategy and while testing, we use the stacking by number (SBN) (Wang
t al., 2019) strategy for creating event frames. The events occurring
n each of these sub-intervals are accumulated into separate event
rames forming 𝑁 event frames. At each time-step, the convLSTM
etwork named inLSTM takes one event frame as input and updates
ts hidden state 𝐡𝑡, as shown in Fig. 3. This hidden state 𝐡𝑡 is then
ed to an encoder network which outputs a hidden representation 𝜙𝑒.
he hidden representation is then fed to a decoder network, decoderImg,
hich outputs the intensity image corresponding to the event frame at

ime-step 𝑡. We denote the 𝑁 intermediate frames predicted between
aw frames 𝐼𝑘 and 𝐼𝑘+1 as 𝐼1𝑘 , 𝐼

2
𝑘 , 𝐼

3
𝑘 … 𝐼𝑁𝑘 . As we have obtained 𝑁

vent frames between two successive intensity frames 𝐼𝑘 and 𝐼𝑘+1, we
an have supervision for only one of those 𝑁 predicted frames. Due
o the way we have formed event frames only the 𝑁th interval has
he corresponding ground truth intensity frame, 𝐼𝑘+1, for supervision.
ence the network can be supervised for intensity image prediction
t every 𝑁 time-steps only. As the proposed recurrent network shares
eights at each time-step, the network is able to predict intensity

rames without being supervised at every time-step.
We supervise the intensity image predicted at 𝑁th interval 𝐼𝑁 with

he loss 𝑖𝑚 defined as,

𝑖𝑚(𝐼𝑁𝑘 ) = 𝑑(𝐼𝑁𝑘 , 𝐼𝑘+1) (1)

here 𝑑(⋅) is an appropriate distance metric. 𝐿1 distance metric has
een popularly used in supervising learning based methods due to their
bility to preserve edge sharpness. This distance metric is however
nsuitable for our problem as the event sensor data has lost the absolute
cene intensity information. So, by using a naive 𝐿1 metric, we are pe-
alizing the network for not predicting something that it theoretically
annot predict with just events as input. To reflect this knowledge, we
efine our distance metric as,

(𝐼, 𝐼) = 1 ∑

‖(∇ 𝐼 − ∇ 𝐼)⊙ 𝑚‖ + ‖(∇ 𝐼 − ∇ 𝐼)⊙ 𝑚‖ (2)

𝑀 𝑥 𝑥 2 𝑦 𝑦 2



P. Shedligeri and K. Mitra Computer Vision and Image Understanding 208–209 (2021) 103208

T
T
o
a
(
o
T

3

n
a



where 𝑀 is the total number of pixels, ∇𝑥 and ∇𝑦 respectively are
x and y-gradient operators. The gradient operator ∇ cancels out any
absolute scene intensity information at each pixel of the image. We use
a binary mask 𝑚 which masks the saturated and low-intensity noisy
image regions and is defined as,

𝑚 =

{

1, 50 < 𝐼 < 200
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(3)

where the image intensity 𝐼 varies between 0 and 255. We also do not
penalize the network at saturated or the low-intensity noisy regions as
the dynamic range of the intensity images is much lower than that of
the event sensor data. We later show the effect of using the naive 𝐿1
loss as a distance metric on the performance of intensity frame and
optical flow prediction.

3.2.2. Optical flow prediction
To predict the optical flow between the current and the previous

time-steps, we feed the hidden representation 𝜙𝑒 obtained at the current
time-step to the decoder network, decoderFlow. For image-based optical
flow estimation, self-supervised learning based methods have been
proposed in Jason et al. (2016), Ren et al. (2017) and Meister et al.
(2018) as obtaining ground truth optical flow for a real dataset is a
challenging task. We make use of these techniques to supervise optical
flow prediction with the help of the intensity images predicted from the
event sensor data. We define our self-supervised loss for optical flow
as,

𝑓𝑙𝑜𝑤(𝐟 𝑠𝑡 ) =
1
𝑀

𝑁
∑

𝑡=2

∑

𝑥,𝑦
‖𝐼 𝑡𝑘(𝑥, 𝑦) − 𝐼 𝑡−1𝑘 (𝑥 + �̂�𝑠𝑡 , 𝑦 + �̂�𝑠𝑡 )‖𝐹 (4)

where 𝐟 𝑠𝑡 = [�̂�𝑠𝑡 , �̂�
𝑠
𝑡 ]
𝑇 is the predicted optical flow at time-step 𝑡 and

𝐼𝑡, 𝐼𝑡−1 are respectively the predicted intensity images at timestep 𝑡, 𝑡−1.
he superscript 𝑠 in 𝐟 𝑠𝑡 denotes the scale of the predicted optical flow.
o overcome gradient locality (Godard et al., 2019; Zhou et al., 2017)
f the bilinear sampler during image warping, optical flow is predicted
t 2 different scales as can be seen in Fig. 3. Following Godard et al.
2019), the optical flow at coarser scales is upsampled to the resolution
f predicted intensity frame and the cost function in Eq. (4) is imposed.
he final loss is the sum of costs at individual scales.

.2.3. Overall cost function
Apart from 𝑓𝑙𝑜𝑤 and 𝑖𝑚, we also impose the piece-wise smooth-

ess constraint on the predicted intensity images and the optical flow
s

𝑖𝑚_𝑠𝑚 = 1
𝑀

‖∇𝑥𝐼𝑡‖𝐹 + ‖∇𝑦𝐼𝑡‖𝐹 (5)

𝑓𝑙𝑜𝑤_𝑠𝑚(𝐟 𝑠𝑡 ) =
1
𝑀

𝑁
∑

𝑡=1
‖∇𝑥𝐟 𝑠𝑡 ‖2 + ‖∇𝑦𝐟 𝑠𝑡 ‖2 (6)

Overall, our training loss becomes,

 = 𝜆1𝑖𝑚 + 𝜆2
2
∑

𝑠=1
𝑓𝑙𝑜𝑤(𝐟 𝑠𝑡 ) + 𝜆3𝑖𝑚_𝑠𝑚 + 𝜆4

2
∑

𝑠=1
𝑓𝑙𝑜𝑤_𝑠𝑚(𝐟 𝑠𝑡 ) (7)

where 𝜆𝑖 with 𝑖 = 1, 2, 3, 4 are hyperparameters which weigh each
of the loss terms for optimal performance. In the second and fourth
term 𝑠 = 1, 2 represents the coarse and fine scale of the predicted
optical flow. The optical flow at coarser scale is first upsampled to
the resolution of the predicted intensity image before applying the loss
function.

4. Experiments

4.1. Architectural details

As shown in Fig. 3 our proposed model consists of 4 major com-

ponents, a LSTM network named inLSTM, an encoder network and

4

two decoder networks named decoderImg and decoderFlow. The detailed
description of architecture is shown in Table S.1 of the supplementary
material. The convolutional LSTM network, inLSTM, consists of three
2D convolutional layers and has a hidden and cell state of size 32
channels. The convolutional LSTM network used at the output of the
decoderImg has the same architecture as inLSTM. The inLSTM network
is then followed by an encoder network and a ResNet block (He et al.,
2016) as described in Table S.1 of the supplementary material. The
ResNet block is then followed by two decoder networks decoderImg
and decoderFlow. Both the decoder networks mirror the encoder net-
work with 4 convolutional layers. Each of the convolutional layers in
the decoder block are preceded by a bilinear upsampling layer that
upsamples the feature maps by a factor of 2. As shown in Fig. 3, the
network also consists of skip connections between the encoder and the
decoder networks, much like a U-Net (Ronneberger et al., 2015). The
decoder network decoderImg outputs an intensity image at the same
spatial resolution as the input event frame. We use the decoderFlow
network to predict optical flow at 2 scales, as shown in Fig. 3. The
feature maps from the final 2 layers of decoderFlow are input to separate
2D convolutional layers to predict the optical flow at 2 scales.

4.2. Implementation details

To train our network we used the dataset proposed in Mueggler
et al. (2017). We provide the full architectural details of our pro-
posed neural network in the supplementary material. Also, further
information about the dataset used and the train–test split is provided
in the supplementary material. For the quantitative evaluation of the
predicted optical flow, we use the MVSEC dataset (Zhu et al., 2018b)
which provides ground truth optical flow for event sensors. To further
demonstrate the generalizability of our proposed algorithm, we also
provide results on various event sensor datasets such as Scheerlinck
et al. (2018), Zhu et al. (2018b), Mueggler et al. (2017) and Perot et al.
(2020).

The dataset in Mueggler et al. (2017), is acquired using DAVIS, a
hybrid intensity and event sensor that captures raw image frames at a
much lower temporal resolution than the event data. Hence, we divide
the interval between each successive frame, 𝐼𝑘 and 𝐼𝑘+1 into 𝑁 sub-
intervals and generate 𝑁 event frames, where the 𝑁th event frame
corresponds to the second raw intensity frame 𝐼𝑘+1. At each timestep,
only one event frame is given as input to the proposed neural network
model which then predicts the corresponding intensity frame and opti-
cal flow simultaneously. As we have the ground truth intensity frame
for the 𝑁th event frame, we supervise the intensity frame prediction
with the loss metric in Eq. (1). Note that the 𝑖𝑚 cost can be imposed
for only 1 out of every 𝑁 timesteps. However, optical flow is supervised
using a self-supervised cost function in Eq. (4). This cost can be imposed
for every timestep as our model predicts the intensity image at every
timestep. However, in the initial phase of training, the output intensity
frames are completely random. Hence, if we impose the optical flow
loss in the initial stages, then the optical flow network will learn to
match random images. To avoid this, we freeze the weights of the
optical flow decoder for the first 1000 iterations and only supervise
intensity image prediction. After the first 1000 iterations, network is
trained to predict simultaneously the intensity frame and optical flow
by minimizing the overall cost function, in Eq. (7).

We divide the time interval between successive raw frames into
𝑁 = 5 uniform intervals and the corresponding events are accumulated
into 5 event frames. We form our training set with such pairs of 5 event
frames and the corresponding raw image frames. During training, we
use 40 event frames and correspondingly 8 raw image frames, all in a
sequence, of one video and input to our algorithm as one instance of
the batch. The neural network is trained using our overall cost-function
described in Eq. (7). The brightness constancy loss specified in Eq. (4)
is applicable at all 40 time-steps. But, the intensity supervision specified

in Eq. (1), is applicable only at 8 time-steps of the sequence.
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Table 1
Quantitative comparison of the predicted optical flow on event sequences from Zhu
et al. (2018b).

Method Indoor flying 1 Indoor flying 2 Indoor flying 3

AEE % outliers AEE % outliers AEE % outliers

Zhu et al. (2018a) 0.83 0.84 1.19 6.75 1.07 4.97
Zhu et al. (2019) 0.58 0 1.02 4 0.87 3
Ours 0.49 0.02 0.55 0.05 0.53 0.03

Fig. 4. We show some qualitative comparisons of the predicted optical flow on the
indoor_flying sequence (Zhu et al., 2018b).

For training our network, we use Adam optimizer (Kingma and Ba,
2015) with a learning rate of 1 × 10−4 which was decayed by a factor
of 0.95 every 10𝑘 iterations. The hyperparameter in Eq. (7) were set
o be 𝜆1 = 1, 𝜆2 = 0.1, 𝜆3 = 0.01 and 𝜆4 = 0.001. The neural network
s trained for 150𝑘 iterations with a batch size of 1. While testing, we
ccumulate a fixed number of events per event frame, which is akin
o the Stacking By Number (SBN) framework proposed in Wang et al.
2019). Accumulating the event frames using the SBN principle has
he advantage of frame rate being adaptive to the event rate which
orresponds to the amount of motion in the scene.

.3. Optical flow

In this section we evaluate the predicted optical flow, both qual-
tatively and quantitatively, using the indoor_flying sequences from
VSEC dataset. Following Zhu et al. (2018a), we choose the metrics (a)
verage End-point Error (AEE) which measures the mean absolute error
nd (b) percentage outliers for quantitative comparison. Percentage
utlier (% outlier) measures the percentage of pixels with end-point
rror above 3 pixels and 5% of the magnitude of the flow vector. For
air comparison, we select two state of the art unsupervised learning-
ased optical flow algorithms (Zhu et al., 2019, 2018a) to benchmark
ur proposed algorithm. In Zhu et al. (2018a), all the events between
wo successive intensity frames are accumulated into a frame based
epresentation and fed to the trained network. In Zhu et al. (2019), a
olume consisting of 30,000 events divided over 10 event frames is fed
nto the optical flow network. Effectively, each of event frames in Zhu
t al. (2019) is formed by accumulating 3000 events from the event
ata. For a fair comparison, we too accumulate successive 3000 events
nto a single event frame which is then sequentially fed to our trained
odel.

In Table 1 we provide the quantitative metrics to compare our opti-
al flow algorithms with the state of the art methods. We qualitatively
ompare the optical flow predicted from our model to that of the Zhu
t al. (2018a) in Fig. 4. We show optical flow predicted from various
est sequences from datasets proposed by Scheerlinck et al. (2018),

ueggler et al. (2017) in Fig. 5. Note that these test sequences do not

5

have ground truth optical flow to be compared against. We also provide
the video of the predicted optical flow for most of the sequences in the
accompanying supplementary video.

4.4. Advantages of event-based optical flow prediction

In this section, we demonstrate the advantages event sensors can
provide over conventional image sensors for challenging scenes with
fast motion and high dynamic range. In Fig. 1, we show an indoor
scene with significant motion blur in the acquired image frames. A
significant temporal information has also been lost between the two
intensity frames. However, due to the high temporal resolution of the
event sensors we are able to reconstruct multiple intensity frames, 60
in this case, between the successive intensity frames. Some of the 60
optical flow predictions have been shown in Fig. 1. Effectively, for this
case, the intensity image and optical flow are being predicted at 1200
frames per second. This is a very high temporal resolution compared to
many commercially available image sensors.

In Fig. 6, we consider two more cases. A night_drive sequence which
s captured in extreme low-light conditions and a night_run sequence
hich combines both the extreme low-light and the fast scene motion

ases. These two sequences are obtained from the dataset proposed
n Scheerlinck et al. (2018). In the night_drive sequence, the acquired
ntensity frames are under-saturated with most of the frame being dark.
owever, the intensity frames reconstructed from the event sensor

eveals most of the details such as trees on the roadside. The night_run
equence reveals the high dynamic range and high temporal resolution
ature of the event sensor. In this sequence, a person runs across the
oad in an extremely low-light scenario lit by only car headlamps. The
cquired intensity frames are severely blurred along with parts of the
mage being saturated. Again, the intensity frames reconstructed from
he event sensor data reveal the full details of the scene being captured.
n this particular case, the intensity frames and optical flow are being
econstructed at an effective frame rate of 1300 frames per second.
hese examples clearly demonstrate the advantages of obtaining the
ptical flow directly from the event sensor data.

.5. Generalization of the algorithm

.5.1. Generalization to novel sensors
The proposed algorithm is built assuming a specific category of

vent sensor where a positive or negative event is triggered when there
s a change in the intensity. As long as this assumption is satisfied,
e believe that the proposed algorithm should be able to predict

he intensity image as well as the optical flow. To verify this, we
onsidered a new dataset proposed in Perot et al. (2020), collected
sing a 1 megapixel ATIS (Asynchronous Time-based Image Sensor)
ensor (Posch et al., 2014). This dataset is sufficiently different from
he one that we have used for training. The resolution of ATIS is far
arger than the DAVIS sensor and the sensor technology is developed
ndependently of the DVS/DAVIS sensor family. We provide the pre-
icted optical flow and intensity images in Fig. 7 without training the
roposed algorithm on this novel dataset. We observe that our proposed
lgorithm is able to generalize well showing that the algorithm works
ell with different types of sensors.

.5.2. Generalization to new event rates
We chose the stacking by number (SBN) strategy for event frame

eneration due to its property of being able to adapt to slow and fast
otions. However, our proposed network was trained by generating

rames with the stacking by time (SBT) strategy. In this strategy events
rom a fixed time interval are grouped into frames. We note that, the
umber of events in each fixed time interval can vary depending on
he texture and relative camera motion. We provide the distribution
f the number of events in a fixed time interval averaged across all
equences from the training set in Fig. 8. We observe that by using
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Fig. 5. We test our proposed optical flow model for its generalizability on various test sequences obtained from Mueggler et al. (2017), Scheerlinck et al. (2018) and Zhu et al.
(2018b). We provide further results in the supplementary video.
H
w
f

Fig. 6. The top figure shows the night_drive sequence shot in low-light conditions,
demonstrating the ability of event sensors to sense objects at a high dynamic range,
allowing the prediction of optical flow in extreme challenging cases. The night_run
sequence combines two challenging scenarios, low-light and motion blur. With the
help of event sensors we are able to predict the optical flow and intensity images at
an effective rate of 1300 frames per second.

Fig. 7. Reconstruction results obtained from dataset proposed in Perot et al. (2020).
The dataset is collected using a 1MP resolution ATIS sensor which acquires only the
event sensor data and no intensity frames. We observe that our proposed algorithm is
able to generalize well to this new dataset..
6

Fig. 8. Histogram of number of events per frame in the SBT strategy used to form
event frames for training.

Table 2
Quantitative optical flow comparison for different number of events per frame. Optical
flow accuracy is highest for event frames with 3000 events per frame and degrading
gracefully for other values of the number of events.

Events/frame Indoor flying 1 Indoor flying 2 Indoor flying 3

AEE % outliers AEE % outliers AEE % outliers

1000 0.83 2.04 0.97 2.89 1.05 3.04
3000 0.49 0.02 0.55 0.05 0.53 0.03
5000 0.613 0.2 0.736 0.21 0.711 2.4
7000 0.842 1.05 1.04 2.4 1.02 2.27

the SBT approach, we are training our algorithm for event frames
containing different number of events per frame. However, a majority
of the event frames contain number of events in the range [2000, 4000].

ence, by using 3000 events per frame there is no major domain shift
hile testing. In Table 2, we show the quantitative results on optical

low accuracy for 1000, 3000, 5000 and 7000 events per event frame.

4.6. Ablation studies

4.6.1. Choice of distance metric for intensity image supervision
In Eq. (2), we introduced a gradient-based L1 distance metric suit-

able for supervising intensity frame prediction from event sensors.
Here, we evaluate the effectiveness of our proposed metric against
other common metrics used for supervising image regression problems.
We particularly consider two different cost functions, one based on
pixel-wise error and the other based on perceptual similarity metric.
For pixel-wise error we consider the mean absolute error (MAE) defined
as,

𝑑(𝐼, 𝐼) = 1 ∑

‖(𝐼 − 𝐼)⊙ 𝑚‖ (8)

𝑀 1
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Fig. 9. We compare the effect of various architectural and supervision choices on
ntensity image estimation with respect to our proposed method. We show intensity
mage estimates for two different sequences obtained when using different two different
ost functions, mean absolute error (MAE) and a perceptual metric LPIPS (Zhang et al.,
018). We also show intensity image estimates when using a single decoder to predict
oth the intensity frame and the optical flow.

able 3
e quantitatively compare the accuracy in optical flow estimation when the intensity

mage is supervised with mean absolute error (MAE) and LPIPS (Zhang et al., 2018).
e also compare the optical flow accuracy for the case when a single decoder is used

o predict both the intensity images and the optical flow.
Indoor flying 1 Indoor flying 2 Indoor flying 3

AEE % outliers AEE % outliers AEE % outliers

MAE 0.57 0.04 0.63 0.75 0.61 0.07
LPIPS 0.53 0.1 0.58 0.5 0.58 0.1
Single decoder 0.54 0.6 0.61 0.1 0.59 0.23
Ours 0.49 0.02 0.55 0.05 0.53 0.03

where 𝐼 and 𝐼 are respectively the ground truth and the predicted
ntensity images. The mask 𝑚 is again used to mask the pixels which
re saturated in the low dynamic range intensity images. In Rebecq
t al. (2019a), the authors use a learned perceptual similarity metric
roposed in Zhang et al. (2018) for supervising intensity image predic-
ion from event data. We also use this perceptual metric called Learned
erceptual Image Patch Similarity(LPIPS) (Zhang et al., 2018) as the
istance metric between our predicted and the ground truth intensity
mages. For a fair comparison, we retrain our proposed network on
hese two metrics with the same hyperparameters as used for the main
xperiment. In Fig. 9, we qualitatively compare the intensity images
btained by using the MAE and the LPIPS metrics. The MAE distance
etric wrongly penalizes the neural network to predict the absolute

ntensity at each pixel which cannot be recovered from the event sensor
ata alone. As we use real data to train our proposed network, the
ismatch in the dynamic range of the input event data and the ground

ruth intensity images make the LPIPS metric unsuitable. When using
ixel-wise loss, the image regions which do not match the dynamic
ange can be masked. Such a flexibility is not provided by perceptual
etrics such as LPIPS. Thus, we observe that the predicted images

ontain artifacts when using the MAE and the LPIPS metrics. From
able 3, we also see that the MAE and LPIPS metrics affect the accuracy
f the predicted optical flow. Hence, our proposed gradient-based L1
etric performs better for the case of training with real data than other
etrics for intensity image regression.

.6.2. Single decoder network to predict intensity image and optical flow
Our network is trained in a multi-task learning fashion with a

ingle encoder and two decoders for the two different tasks of intensity
mage and optical flow prediction. However, it is also possible to use
nly a single decoder to predict both the intensity image and optical
low. This leads to reduction in the number of parameters that need
o be trained, hence reducing the amount of data required to train
he network. We explored this option of training a single decoder
etwork to predict both the intensity image and the optical flow. For
his experiment, we use our proposed decoder network decoderImg as
ur base network to predict the intensity images. To this network we

ugment two additional convolutional layers for optical flow prediction

7

able 4
untime of different networks. Our proposed framework can process more than 150

rames per second at a resolution of 256 × 256.
Network Number of parameters Run time at resolution

180 × 240 256 × 256

Two decoders 2.4 M parameters 4.91 ms 5.89 ms
Single decoder 1.9 M parameters 3.9 ms 4.8 ms

with 2 channels as output. These convolutional layers take as input
the feature maps from the final 2 layers of the decoderImg network.
Again, for a fair comparison we use the same hyperparameters to train
this network as the ones used for our main experiment as described
in Section 4. We provide qualitative results of the intensity images
predicted from the single decoder network in Fig. 9. We also compare
the optical flow estimation accuracy quantitatively for the different
ablation experiments in Table 3. It can be observed that using a
single decoder reduces the performance of the algorithm on both the
intensity and optical flow prediction. However, use of two different
decoder networks does not increase the runtime significantly as shown
in Table 4 The inference time of the different networks is computed on
a machine with Nvidia TitanX GPU with Intel Xeon processor. We can
see that our proposed framework can process more than 150 frames per
econd at a resolution of 256 × 256.

. Conclusion

In this work, we propose an algorithm to simultaneously predict the
ntensity and optical flow from event sensor data. The optical flow pre-
iction is self-supervised and hence does not require difficult to acquire
round truth optical flow for event data. As our algorithm requires as
ew as 3000 events per time-step, the optical flow is predicted at a
ery high temporal resolution of more than 1000 frames per second
or scenes with large motion. This high temporal resolution prediction
lso enables our algorithm to handle any non-linear relative motion of
he scene. Due to the sparse nature of event sensor data, the predicted
ptical flow is sparse as well, and predicting a dense optical flow from
vent data alone can be an interesting future direction.
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