
Programming Assignment-2: Convolutional Neural
Networks

Prasan Shedligeri, ee16d409@ee.iitm.ac.in

Due date: Sep 17th, Sunday, 11:55pm

Note:

1. For any questions, please schedule a time with TAs before deadline according to their con-
venience. Please use moodle dicussion threads for posting your doubts and also check it
before mailing to TAs, if the same question has been asked earlier.

2. Submit a single zip �le in the moodle named as PA2 Rollno.zip containing report and folders
containing corresponding codes.

3. Read the problem fully to understand the whole procedure.

4. Late submissions will be evaluated for reduced marks and for each day a�er the deadline
we will reduce the weightage by 10%.

1



1 MNIST classi�cation using CNN

In this part we will explore CNNs for classifying MNIST data. For this assignment you can make
use of any of your favourite deep learning libraries.

We will start with very basic networks, evaluate performance and then move on to powerful
networks. Use Relu non-linearity for training the neural network.

Experiments

Baseline with one convolutional layer

Extract feature maps from the single convolutional layer and then pass it to the max pool layer to
reduce the dimensions. Fla�en the output and then use a 10 neuron fully connected layer to get
the logits. Use a so�max classi�er over these logits.
Overall architecture: input - conv (32 3x3 �lters, stride 1, zero padding of 1) - 2x2 maxpool with
stride 2 - fully connected (10 outputs) - so�max classi�er

2 convolutional layers

Modify the above network to include one more conv layer with 32 3x3 �lters. Use 2x2 maxpooling
a�er the conv layer to reduce the dimensions. Classify using the features extracted from the 2 conv
layers.
Overall architecture: input - conv1 (32 3x3 �lters, stride 1, zero padding of 1) - 2x2 maxpool
with stride 2 - conv2 (32, 3x3 �lters,stride 1, zero padding of 1) - 2x2 maxpool with stride 2 - fully
connected (10 outputs) - so�max classi�er

2 convolutional layers + 1 hidden fully connected layer

Modify the above network by adding one fully connected layer with 500 neurons a�er the second
convolutional layer.
Overall architecture: input - conv1 (32 3x3 �lters, stride 1, zero padding of 1) - 2x2 maxpool
with stride 2 - conv2 (32 3x3 �lters, stride 1, zero padding of 1) - 2x2 maxpool with stride 2 - fully
connected (500 outputs)- fully connected (10 outputs) - so�max classi�er

2



Loading the MNIST data

You can make use of the binary �les that you downloaded for the �rst assignment. You can also
make use of the python library sklearn and download the MNIST data using sklearn.datasets.
If using sklearn then make sure that you shu�e the data properly and divide the whole data into
training (50000 images), validation (10000 images) and test (10000 images) sets.

Submissions

For each of the experiments above, you are required to show the plot of training error, validation
error and prediction accuracy over the training progress. For each of the experiments, at the end
of training report the average prediction accuracy for the whole test set of 10000 images. You
should also plot randomly selected test images showing the true class label as well as predicted
class label. Use standard training techniques as described in the previous assignment. Use a l2
regularization over only the weights of the neural network.

2 Generating Adversarial examples

CNNs are discriminative models. �ey try to learn a separating hyperplane between each of the
classes. �is makes it easier to fool them. All one needs to do is �nd the noise matrix which when
added to an image of one class (which is on one side of the hyperplane), gets classi�ed with high
probability as the wrong class (images has shi�ed to the other side of the hyperplane). We will
call this matrix as adversarial noise.

Experiment

Load the pre-trainedMNIST classi�cationmodel from the previous problem. Use the model which
gave the highest accuracy. Once the pre-trained model is loaded, make sure that network weights
don’t change during any of your operations.

We’ll do two major changes to obtain the adversarial noise from the pre-trained network.

• Initialize a matrix of size of your input with a zeros. Let’s call this matrix noise. Let your
input image be x. Now obtain x noise = x + noise. x noise will be your input to your
neural network. Note that the values of x noise should always be between 0 and 255.

3



• We need to �x a class for which you want to generate the adversarial noise. For instance, we
will generate it for class 3. Pass x noise through the trained neural network. You will get
probabilities at the output layer. Now calculate the cost for each of the examples assuming
that the true label is class 3, irrespective of whether the input x belonged to class 3 or not.
Note that, the input example might be any digit but you are telling the network that it
belongs to class 3. Since, all the weights of the network are �xed, it will try to tweak the
only variable, in this case noise, such that x noise is classi�ed as class 3, irrespective of x.
Using the calculated cost, get the gradients grad, with respect to noise. Now do a gradient
ascent over the variable, noise.

noise(k) = noise(k−1) + α ∗ grad

where α is the step size and k=1,2,3,. . .

Submissions

• Plot the training as well as the validation error over the progress of optimization. Also show
the accuracy of prediction.

• Show the generated adversarial noise as an image for each of the classes of MNIST. In all,
you should show 10 images which are the adversarial noise for each of the class in MNIST.

• Sample a �xed set of 9 test examples from the dataset. Add the adversarial noise and classify.
Show the true class and the predicted class. Repeat this for all the 10 generated adversarial
noise matrices.

3 Visualizing Convolutional Neural Network

In this section we will try to visualize what �res a particular neuron in the neural network.

Experiment

Load the pre-trained MNIST model with the highest accuracy from the �rst problem. Do not
change the trained weights in any of your operations. Initialize a matrix of size of an MNIST
image with gaussian noise centered around 128. Let this matrix be x init Starting with this noise

4



matrix we will try to maximize the probability of this matrix being classi�ed as class target. Here
target can take values between 0 to 9.

Let, logits be your output at the last layer before so�max. De�ne, cost = logits[:, target],
where target is a �xed class. Obtain the gradient of costwith respect to x init. Smoothen the gra-
dientswith a gaussian kernel of variance, sigma =

k ∗ 4
num iter + 0.5

, where k = 1, 2, 3, ..., num iter,
where num iter is the number of iterations for which you will do the gradient ascent. Now, do a
gradient ascent over x init along with weight decay.

x init =(1− α) ∗ x init

x init =x init+ step size ∗ gradients

where step size =
1.0

std(gradients)
and α is weight decay parameter (typically 0.0001). Now,

pass this updated x init again to the pre-trained network and repeat the above steps for about
200 iterations. Make sure that the input always lies in the range of the minimum and maximum
value of the input for which the original network was trained.

Submission

• For the above experiment you should report the 10 �nal x init images obtained through
maximizing each of the 10 neurons in the output of the neural network. Also show, the
plot of the cost over optimization iterations. In this experiment, the cost should increase
because we are doing gradient ascent.

• Now, instead of maximizing the neurons in the �nal layer, we will maximize the neurons
at the output of maxpooling layer a�er the second convolutional layer. �is is the output
just before the fully connected layers. �is output will be of shape [1,7,7,32], where 7 is
the spatial size of the feature map and 32 is the number of feature maps. Maximize the
activation of the central neuron of each of the feature maps by following the procedure
described above. Report the �nal x init for any of the 10 out of 32 feature maps.

5


	MNIST classification using CNN
	Generating Adversarial examples
	Visualizing Convolutional Neural Network

